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Exotic sheaves

Consider the (equivariant) coherent derived categories of the (Grothendieck-)
Springer resolution. These categories are endowed with an action of the affine
braid group. The exotic t-structures are the unique t-structures on these cat-
egories such that

1. the positive braids act right t-exact, and
2. the pushforward to the base is t-exact.

They were most famously used by Bezrukavnikov and Mirković [BM] to prove
(most of) Lusztig’s conjectures on the canonical basis of the Grothendieck
group of Springer fibers.
Exotic t-structures are hard to understand: Both the existence of the braid
group action and the exotic t-structure are highly non-obvious and require
deep results from modular representation theory.

Our viewpoint

Exotic t-structures arise very naturally from categorical actions.

Categorical actions and braid groups

GLu�-action
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weight spaces 𝑉u�

action of 𝑒u� and 𝑓u� between them
relations (e.g. [𝑒u�, 𝑓u�]|u�u�
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categorical 𝔤𝔩u�-action
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𝜆 ↦ triangulated category 𝒦(𝜆)
bi-adjoint functors Eu�, Fu� (𝑖 = 0, … , 𝑛 − 1)
categorified relations (e.g. (∗) below)
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Eu�Fu�|𝒦(u�) = Fu�Eu�|𝒦(u�) ⊕ ⨁
⟨u�u�,u�⟩

Id𝒦(u�), (∗)

Typically: 𝒦(𝜆) are derived categories of sheaves and the functors are given
by Fourier–Mukai kernels.
Out of the Eu�, Fu� one can naturally form complexes Tu� giving an action of the
affine braid group action on ⨁u�𝒦(𝜆) [CK1].
Fineprint: Need some more data/constraints to make this work. The weight categories also have an important
internal grading (hence the “quantum” in the title). The Tu� are given by the Rickard complexes

Tu�|𝒦(u�) = F(ℓ)
u� → Eu�F

(ℓ+1)
u� → E(2)

u� F(ℓ+2)
u� → ⋯ , ℓ = ⟨u�u�, u�⟩.

Results: inducing exotic t-structures

For our purposes, we identify the weights with 𝑛-tuples 𝑘 of integers (e.g. for
𝔤𝔩2 the roots are 𝛼1 = (−1, 1) and 𝛼0 = (1, −1)). We assume that ∑ 𝑘u� = 𝑛
and all 𝑘u� ≥ 0. In particular, we get an affine braid group action on the central
category 𝒦(1, … , 1).

Main idea

highest weight
𝔤𝔩u�-action +

𝔹aff-action
central weight

Typically it is easy to come up with interesting t-structures on the highest
weight 𝒦(𝑛, 0, … , 0), e.g. one can use perverse-coherent t-structures.

Theorem (Inducing from the highest weight)
Suppose that the highest weight category 𝒦(𝑛, 0, … , 0) weakly generates
𝒦(1, … , 1) under the 𝔤𝔩u�-action. Then (under mild assumptions) there
exits a unique extension to a t-structure on ⨁u� 𝒦(𝑘) such that all Eu� and
Fu� are t-exact. Moreover, all positive braids act right t-exact with respect to
this t-structure.

In other instances one has a t-structure on the central weight category and
wants to spread it out to the other categories:

Theorem (Inducing from the central weight)
Suppose we are given a braid positive t-structure on 𝒦(1, … , 1). Then
there exists a unique t-structure on ⨁u� 𝒦(𝑘) determined by exactness of
the 1-morphism 𝜓∶ 𝒦(𝑘) → 𝒦(1, … , 1) corresponding to a collection of
planar trees. Moreover, this t-structure is braid positive.

Applications and future work

• Obtain exotic t-structure on spaces where the known constructions (excep-
tional sets, tilting) do not apply.

• Of particular interest: exotic t-structures on convolution varieties of the
affine Grassmannian (see example on the right). We will expand this to
more general convolution varieties in future work.

• We expect that structural results (weight structure, description of irre-
ducibles) can be obtained with our method and be applied to these new
examples.

The main example

Define the varieties
𝕐(𝑘) = {ℂ[𝑧]u� = 𝐿0 ⊂ 𝐿1 ⊂ ⋯ 𝐿u� ⊂ ℂ(𝑧)u� ∶ 𝑧𝐿u� ⊆ 𝐿u�, dim(𝐿u�/𝐿u�−1) = 𝑘u�},
and
Gru� = 𝑌(𝑘) = {ℂ[𝑧]u� = 𝐿0 ⊂ 𝐿1 ⊂ ⋯ 𝐿u� ⊂ ℂ(𝑧)u� ∶

𝑧𝐿u� ⊆ 𝐿u�−1, dim(𝐿u�/𝐿u�−1) = 𝑘u�}.
These convolution varieties are well-studied and used, for example, to cat-
egorify link invariants or give a (quantum) K-theoretic analogue of the ge-
ometric Satake equivalence. Note that 𝑌(1, … , 1) has an open subvariety
isomorphic to �̃� and the 𝕐(𝑘) have open subvarieties isomorphic to partial
Grothendieck–Springer resolutions.
The corresponding collections of derived categories 𝐷u�(𝕐(𝑘)) and 𝐷u�(𝑌(𝑘))
each naturally carry categorical 𝔤𝔩u�-actions.

Corollary

• Starting with a perverse-coherent t-structure on 𝐷u�(𝕐(𝑛, 0, … , 0)) we get
an exotic t-structure on 𝐷u�(𝕐(1, … , 1)).

• This restricts to a perverse t-structure on 𝐷u�(𝑌(1, … , 1)).
• This induces a braid positive t-structure on all 𝐷u�(𝑌(𝑘)).
• Restricting to the open subvarieties recovers the exotic t-structures of
Bezrukavnikov–Mirković on �̃�, ̃𝔤 and ̃𝔤𝒫.

How?

Careful analysis of the structure and combinatorics of categorical 𝔤𝔩u�-actions
and the associated braid group actions allows us to induce t-structures using
the following lemma (which is based on a theorem of Polishchuk [P]).
Lemma. Let Φ∶ 𝐷u�(𝑋) → 𝐷u�(𝑌) be a conservative Fourier–Mukai functor.
Assume that we are given a t-structure on 𝐷u�(𝑌) such that Φ ∘ Φu� is right
t-exact. Then there exists a unique t-structure on 𝐷u�(𝑋) such that Φ is t-exact.
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