Exercise 1. A rigid dualizing complex over \mathcal{D}_X is a dualizing complex \mathcal{R} together with a rigidifying isomorphism
\[\rho : \mathcal{R} \to \mathcal{R} \mathcal{H} \mathcal{m}_{\mathcal{D}_X \otimes \mathcal{D}_X}(\mathcal{D}_X, \mathcal{R} \otimes \mathcal{R}). \]
(We remark that rigid dualizing complexes are unique up to unique isomorphism.) Show that $\mathcal{D}_X[2 \dim X]$ is rigid. [Hint: Let $\Delta : X \to X \times X$ be the diagonal morphism and use that $\Delta_*(\Delta_*\mathcal{O}_X) \cong \Delta_*(\Delta_*\mathcal{O}_X) \cong \Delta_*(\mathcal{O}_X).$]

Exercise 2. Let \mathcal{M} be an integrable connection, i.e. an \mathcal{O}_X-coherent \mathcal{D}_X-module. Show that $\mathcal{D}\mathcal{M} \cong \mathcal{H} \mathcal{m}_{\mathcal{O}_X}(\mathcal{M}, \mathcal{O}_X)$.

Exercise 3. Let \mathcal{M} be a coherent \mathcal{D}_X-module with $\text{Ch}(\mathcal{M}) \subseteq X = T^*_XX$. Show that \mathcal{M} is an integrable connection.

Exercise 4. Let $i : Z \hookrightarrow X$ be a closed embedding. Let
\[i^*(T^*X) = Z \otimes_X T^*X \]
be the natural morphisms induced by i. Let \mathcal{M} be a coherent \mathcal{D}_Z-module. Show that
\[\text{Ch}(i_*\mathcal{M}) = \varpi(\rho^{-1}\text{Ch}(\mathcal{M})). \]
Deduce that \mathcal{M} is holonomic if and only if $i_*\mathcal{M}$ is.

Exercise 5. Show that for any affine open subset U of X the ring $\mathcal{D}_X(U)$ has left and right global dimension $\dim X$. Deduce that any $\mathcal{M} \in \text{Mod}_{\mathcal{D}_X}$ has a locally projective resolution of length at most $\dim X$.

Exercise 6. Show that there exists a canonical morphism of functors
\[f_! \to f_* : D^b_{\text{hol}}(\mathcal{D}_X) \to D^b_{\text{hol}}(\mathcal{D}_Y). \]